Parameter estimation for a bidimensional partially observed Ornstein-Uhlenbeck process with biological application

نویسندگان

  • Benjamin Favetto
  • Adeline Samson
چکیده

We consider a bidimensional Ornstein-Uhlenbeck process to describe the tissue microvascularisation in anti-cancer therapy. Data are discrete, partial and noisy observations of this stochastic differential equation (SDE). Our aim is the estimation of the SDE parameters. We use the main advantage of a one-dimensional observation to obtain an easy way to compute the exact likelihood using the Kalman filter recursion. We also propose a recursive computation of the gradient and hessian of the log-likelihood based on Kalman filtering, which allows to implement an easy numerical maximisation of the likelihood and the exact maximum likelihood estimator (MLE). Furthermore, we establish the link between the observations and an ARMA process and we deduce the asymptotic properties of the MLE. We show that this ARMA property can be generalised to a higher dimensional underlying Ornstein-Uhlenbeck diffusion. We compare this estimator with the one obtained by the well-known EM algorithm on simulated data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Inference for Partially Observed Diffusion Processes

I would like to express my gratitude to my supervisor Susanne Ditlevsen, for scientific advise and her never failing positivity toward her students. Also a very special thanks to Omiros Papaspilioupoulos who has been a big inspiration and for his patience during numerous Skype conversations; always encouraging and full of support and good ideas. Great thanks are also due to Mathieu Kessler for ...

متن کامل

Sequential maximum likelihood estimation for reflected Ornstein-Uhlenbeck processes

The paper studies the properties of a sequential maximum likelihood estimator of the drift parameter in a one dimensional reflected Ornstein-Uhlenbeck process. We observe the process until the observed Fisher information reaches a specified precision level. We derive the explicit formulas for the sequential estimator and its mean squared error. The estimator is shown to be unbiased and uniforml...

متن کامل

Minimum L1-norm Estimation for Fractional Ornstein-Uhlenbeck Type Process

We investigate the asymptotic properties of the minimum L1-norm estimator of the drift parameter for fractional Ornstein-Uhlenbeck type process satisfying a linear stochastic differential equation driven by a fractional Brownian motion.

متن کامل

A least squares estimator for discretely observed Ornstein–Uhlenbeck processes driven by symmetric α-stable motions

We study the problem of parameter estimation for Ornstein–Uhlenbeck processes driven by symmetric α-stable motions, based on discrete observations. A least squares estimator is obtained by minimizing a contrast function based on the integral form of the process. Let h be the length of time interval between two consecutive observations. For both the case of fixed h and that of h → 0, consistenci...

متن کامل

Method of Moments Estimation of Ornstein-Uhlenbeck Processes Driven by General Lévy Process

Ornstein-Uhlenbeck processes driven by general Lévy process are considered in this paper. We derive strongly consistent estimators for the moments of the underlying Lévy process and for the mean reverting parameter of the Ornstein-Uhlenbeck process. Moreover, we prove that the estimators are asymptotically normal. Finally, we test the empirical performance of our estimators in a simulation stud...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009